Grumman's Ascendency

Chapter Two:

With the FF-1 nearing the beginning of its production run, Grumman’s management turned their attention to something close to Leroy’s heart. For years the Navy was operating Loening OL amphibians. However, being first flown in 1923, these were badly in need of replacement. Grumman retained the basic layout of the Loening, but the new design was far more refined. By deepening the centerline float, Grumman was able to lower the thrust-line of the engine, which greatly improved forward vision. Designed with an all-metal semi-stressed monocoque fuselage, the new airframe was quite advanced for the time. Wing construction was also of aluminum alloy, with fabric covering. When the design team was satisfied with their proposal, it was forwarded to the Navy, who immediately issued a contract for one prototype.

Loening OL-8
Now quite old and lacking in performance, the Loening OL series had been in service since the mid 1920s and was well past its prime. This OL-8 was still providing day to day service when Grumman proposed its replacement in 1932. One can see that the thrust line of the engine is very high in relation to the cockpit. This was caused by the switch from a narrow liquid cooled engine to a large diameter radial in later variants. Vision over the radial engine was none-existant.

April 24, 1933 presented Grumman’s personnel with the promise of an unusually warm spring day. The XJF-1 was carefully pushed out onto the apron and preparations were then made for the amphibian’s first flight. Fuel and oil were checked and rechecked. As a small crowd of Grumman employees stood by, the engine was started and the ungainly aircraft taxied out. Positioned at the end of the field, the test pilot performed his pre-take-off checks. Everyone heard the engine increase in speed and noise, then die down after a magneto check. Seconds later, they heard the power come up again as the pilot advanced the throttle until the engine’s manifold pressure stabilized at 30 in/hg. Brakes were released and the big biplane began to roll. Slowly feeding in power, the pilot guided the XJF-1 down the field. Acceleration was much better than anyone would have imagined. Without the slightest backpressure on the control stick, the plane flew itself off the field. A pronounced wobble was seen by those watching from the ground as the pilot cranked the gear retraction handle around for 47 exhausting turns to pull up the landing gear. Entering a gentle bank, the XJF-1 turned north and disappeared from sight.

XJF-1 Prototype
It would take only one flight to establish that the XJF-1 was a vast improvement on the Loening OLs currently in use by the Navy. The original prototype was armed, with a .30 caliber Browning machine gun clearly visible in the rear cockpit. Only the vertical stabilizer would change substantially before the new amphibian entered production as the JF-1 in late 1934.

This first flight and subsequent test hops would reveal a necessity to reshape the vertical stabilizer. Some other minor details would require attention, but once again, the basic design proved to be sound. After the Grumman was satisfied with their efforts, the amphibian was turned over to the Navy.

A JF-2 takes off
This excellent landing photo of a Coast Guard JF-2 reveals the narrow track of the landing gear. Untypical of most biplane amphibians, the Grumman JF series offered excellent performance and superb utility.

Navy testing revealed a baseline improvement over the Loening that was nothing less than startling. Maximum and cruise speeds were very impressive, being more than 40% faster than the older aircraft. Climb rate was more than 50% greater than the latest OL-9. With a service ceiling of 25,000 feet, the Grumman could climb nearly 11,000 feet higher than the tired, old Loenings. Being fully equipped for carrier operations, the XJF-1 was exactly what the Navy wanted and needed. With few changes, a contract was issued for twenty-seven JF-1s with the first to be delivered in late 1934.

A USCG JF-2 banks away.
This revealing photo was taken by renowned aviation photographer, Gordon Williams. Viewed from the cabin of a Douglas RD-4, this JF-2 shows it serial number painted on the underside of the float. The snowcapped mountains in the distance indicates that this JF-2 was stationed in the northwest, likely in Washington state.

Named the “Duck”, the JF-1 would evolve through six major variants. Seeing that the JF-1 would be perfect for their needs, the U.S. Coast Guard ordered 14 of the amphibians, without arresting gear and ordered that the Pratt & Whitney R-1830 engine of the JF-1 be replaced with a larger diameter Wright R-1820. Designated the JF-2, these Ducks would go on to give sterling service for many years.

JF-2 in USCG service.
Typical of the Coast Guard JF-2, the tail hook of the JF-1 had not been installed. While the JF-1 was powered by a twin row Pratt & Whitney R-1830 radial, the Coast Guard opted for the larger diameter Wright R-1820. This did reduce visibility over the nose somewhat, but was still far better than the old Loenings.

Later, the Navy would also adopt the R-1820 engine, and these powered the JF-3. In 1937, the designation was changed again with the improved J2F-1. This was the first variant with noticeable modifications to the airframe. The rear of the float was extended and the area above this was substantially filled in with new structure.

J2F-1 in Neutrality Patrol colors.

Along with a change of designation, the J2F-1 introduced several significant airframe changes. Earlier models used an external strut to link the upper and lower ailerons. This was replaced by an internal linkage. To obtain better in-water handling, the float was lengthened and the structure above this was largely filled in. This also had the advantage of improving ground handling by moving the tail wheel further aft and reduced any tendency to weather-cock in a strong wind.

Earlier Ducks had a strut connecting the upper and lower ailerons. This was done away with on the J2F-1 and the linkage was moved to the inside of the wing. With the coming of the war, Grumman needed every bit of production capacity for fighter production. As a result, the last 330 Ducks ordered were to be built under license by Long Island’s Columbia Aircraft Corporation. Despite not being built by Grumman, the Navy gave them the Grumman designation of J2F-6.

Even as Grumman tooled up to begin production of the FF-1, another new fighter design was underway. It seemed only logical that the performance advantage of the FF-1 would be very short lived. To maintain their position, Grumman certainly understood that continuous research and development was an absolute necessity to remain competitive.

An F2F-1 of VF-2B
Grumman's tubby little F2F-1 was well received within the fleet. This fighter was assigned to VF-2B, which was deployed aboard the U.S.S. Lexington. They replaced the aging Boeing F4B-1 then in service with the squadron.

It would be difficult to improve performance with another two-seat fighter and Grumman prepared a proposal for a new carrier borne single seat fighter. Being very much pleased with the FF-1, the Navy did not hesitate to give Grumman a contract for a prototype designated the XF2F-1. The general arrangement would be similar to the two-seater FF-1. However, the overall dimensions would be considerably reduced. Carrying over the same landing design only magnified the squat, tubby appearance of the new biplane. While production of the FF-1 proceeded, the XF2F-1 was completed and prepared for its first test flight. Rolled out into the Long Island sunshine, the little biplane gleamed in its new paint. Its all-metal fuselage was state of the art. Powered by twin row Pratt & Whitney R-1535-44 radial generating 625 horsepower, the prototype simply leapt into the air after a short take-off roll. The XF2F-1 demonstrated a top speed of 229 mph., and climbed at the phenomenal rate of 3,130 feet per minute. Maneuverability was equally outstanding. After initial testing was completed by Grumman test pilots, the prototype was delivered to the Navy at Anacostia Naval Air Station. Not unexpectedly, the Navy was pleased to find that the aircraft was even better than they had anticipated. Just five months after its first flight, a procurement order was issued to Grumman on March 17, 1934. Within a year, the first production F2F-1 fighter was delivered and accepted.

Three F2F-1 fighters of VF-2B in a V formation
Three of VF-2B's F2F-1 fighters fly the typical V formation. It is interesting to note that the various planes of each flight could be discerned not only by the fuselage numbers, but by the painted portion of the engine cowling.

When the F2F-1 entered into service, it appeared with a refined cowling and a more powerful R-1535-72 engine. Top speed had increased slightly to 231 mph, and the rate of climb had dropped slightly due to the weight of added equipment. Still, performance was considered excellent and the fighter proved to be extremely popular with its pilots. The first squadron to receive the new fighter was VF-2B aboard the U.S.S. Lexington. Other squadrons to fly the F2F-1 were VF-3B on the U.S.S. Ranger and VF-5 deployed on the U.S.S. Wasp. These fighters would remain in front line service until they were eventually replaced by the F3F and later, by new monoplane fighters in 1939 and 1940. Though relegated to training duties, the F2F would soldier on throughout the war giving good service to a new generation of Naval Aviators.

F2F-1 of VF-2B
Shown in the colors of VF-2B assigned to the USS Lexington, the F2F-1 shows off its remarkably squat fuselage. Called the "Flying Barrel", the F2F-1 was an excellent performer despite its less than sleek profile.

Go to Chapter Three

Unless otherwise indicated, all articles Copyright Jordan Publishing Inc. 1998/1999/2000.
Reproduction for distribution, or posting to a public forum without express written
permission is a violation of applicable copyright law. The Cradle of Aviation
Museum patch and background is the property of the Cradle of Aviation Museum.
Reproduction for distribution, or posting to a public forum without the written permission
of Jordan Publishing Inc. is prohibited.